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A ring neural network is a closed chain in which each unit is connected unidirectionally to the next one.
Numerical investigations indicate that continuous-time excitatory ring networks composed of graded-response
units can generate oscillations when interunit transmission is delayed. These oscillations appear for a wide
range of initial conditions. The mechanisms underlying the generation of such patterns of activity are studied.
The analysis of the asymptotic behavior of the system shows that~i! trajectories of most initial conditions tend
to stable equilibria,~ii ! undamped oscillations are unstable, and can only exist in a narrow region forming the
boundary between the basins of attraction of the stable equilibria. Therefore the analysis of the asymptotic
behavior of the system is not sufficient to explain the oscillations observed numerically when interunit trans-
mission is delayed. This analysis corroborates the hypothesis that the oscillations are transient. In fact, it is
shown that the transient behavior of the system with delay follows that of the corresponding discrete-time
excitatory ring network. The latter displays infinitely many nonconstant periodic oscillations that transiently
attract the trajectories of the network with delay, leading to long-lasting transient oscillations. The duration of
these oscillations increases exponentially with the inverse of the characteristic charge-discharge time of the
neurons, indicating that they can outlast observation windows in numerical investigations. Therefore, for
practical applications, these transients cannot be distinguished from stationary oscillations. It is argued that
understanding the transient behavior of neural network models is an important complement to the analysis of
their asymptotic behavior, since both living nervous systems and artificial neural networks may operate in
changing environments where long-lasting transients are functionally indistinguishable from asymptotic re-
gimes.@S1063-651X~97!01103-3#

PACS number~s!: 87.10.1e, 07.05.Mh
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I. INTRODUCTION

Experimental studies of the behavior of self-connec
single neurons have shown that the time it takes for a sig
to be transmitted~referred to as delay here! from the neuron
to itself can influence the discharge pattern of biological n
rons @1#. The influence of delay on neural behavior has a
been analyzed in theoretical and computational studies
self-connected single neuron and of recurrent neural netw
models@2,3#. These results indicate that the delay is an i
portant control parameter in living nervous systems: to d
ferent ranges of delays correspond different patterns of n
ral activities.

In some artificial neural network~ANN! applications,
such as content addressable memories, information is st
as stable equilibrium points of the system. Retrieval occ
when the system is initialized within the basin of attracti
of one of the equilibria and the network is allowed to sta
lize in its steady state@4,5#. Delayed interunit transmission
may render such networks more versatile, for instance,
enabling the storage and retrieval of time-varying sequen
in discrete-time@6# and continuous-time networks@7#. Nev-
ertheless, in some ANN applications, uncontrolled delay m
deteriorate network performance. Such delays arise in h
ware implementation of ANNs, due to finite switching an
551063-651X/97/55~3!/3234~15!/$10.00
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transmission times of the circuit components. They may
terfere with information processing by rendering the equil
ria unstable thus making the retrieval of the correspond
information impossible@8#. This problem has motivated
number of studies investigating the dynamics of networks
graded-response neurons~GRNs! in the presence of delay
@8,9#.

The above considerations indicate that determining
contribution of the delay to the shaping of neural dynamics
important for better understanding a variety of neural n
work behaviors. This work deals with the influence of del
on the behavior of networks composed of continuous-ti
GRNs, which have been used as models of living neu
assemblies@10# as well as in ANN applications@4#.

We study the influence of the delay on the behavior o
network composed ofN GRNs forming a ring where eac
unit is connected unidirectionally to the next one through
excitatoryconnection. Rings with anodd number of inhibi-
tory connections are well known to generate sustained os
lations. For example, such rings composed of inverting ga
referred to as ring oscillators, are used to determine g
delays of complementary metal-oxide semiconduc
~CMOS! circuits @11#. Systems in a ring have also been us
as models for the study of feedback in living systems such
those that come in action in the control of gene express
3234 © 1997 The American Physical Society
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FIG. 1. Oscillations in an excitatory two-neuron ring network with delay. The panels on the left and right show the time cours
activationsx0 ~upper row! andx1 ~lower row!, at two different times. Parameters used:e050.01,W05W154, a05a155, A05A151.
Initial condition f0(u)520.267(u11) for 21<u<20.625,f0(u)50.267(u10.25) for 20.625<u<20.25, f0(u)50.8(u11) for
20.25<u<20.125, f0(u)520.8(u) for 20.125<u<0, and f1(u)528(u11) for 21<u<20.75, f1(u)58(u10.5) for
20.75<u<20.25,f1(u)528u for 20.25<u<0. Abscissas: time~dimensionless, rescaled to the delay!; ordinates: activation~dimen-
sionless!.
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@12#. In the field of neural networks, rings are studied to g
insight into the mechanisms underlying the behavior of
current networks@2,13,5,14#. From the formal standpoint
ring networks belong to the class of cyclic feedback syste
whose asymptotic behavior has been investigated in s
detail ~see@15–18#, and the references therein!. These theo-
retical results help in better understanding the system’s
namics and are important complements to experimental
numerical investigations using analog circuits and dig
computers.

Ring networks are classified into positive and negat
feedback systems depending on their response to a pert
tion. When the effect of a perturbation~e.g., increase in one
neuron’s activation! is reinforced by the feedback loop~e.g.,
the neuron receives an excitatory feedback!, the ring operates
a positive feedback. Reciprocally, when the effect of a p
turbation is reduced by the feedback loop~e.g., the neuron
receives an inhibitory feedback!, the ring operates a negativ
feedback. Rings may also have mixed responses, but
cannot be the case for rings of GRNs since each unit h
monotone increasing output function. A GRN ring netwo
exerts negative feedback when it contains an odd numbe
inhibitory connections. All other cases, that is, when the n
work is excitatory or has an even number of inhibitory co
-
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nections, lead to positive feedback. Schematically, t
mechanism can be expressed as ‘‘negative times negati
positive.’’

Theoretical results indicate that activations in excitato
ring networks should in general eventually stabilize, as s
systems have a strong tendency to converge to stable e
libria ~@19#, and the references therein!. Surprisingly, in nu-
merical investigations, oscillatory behavior is easily gen
ated in excitatory ring networks with delay. An example
such oscillatory patterns obtained with an excitatory tw
neuron ring network with delay is shown in Fig. 1. The upp
and lower panels represent the time course of the activat
of the two neurons. The panels on the left show the beha
of the system during a short period after the network is
tivated, while those on the right show the dynamics at a la
time. It can be seen that both activations rapidly stabilize
a periodic square-wave-like oscillation, which is maintain
throughout the observation window. Such oscillations w
obtained in a large number of numerical investigations us
different integration schemes~Appendix A! and were robust
to the reduction of the discretization time step, indicati
that they were not artifacts of the numerical methods. T
following two properties of the oscillatory solutions we
derived from numerical investigations of the behavior of e
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citatory ring networks with delay:~i! When the network is
initialized with oscillating activations, it displays period
oscillations for small enough characteristic charge-discha
time of the neurons,~ii ! similar oscillations do not occur in
excitatory ring networks with instantaneous transmiss
times.

Theoretical results indicate that undamped oscillatio
cannot be stable in excitatory ring networks, while numeri
investigations seem to indicate the opposite. Thus to exam
this apparent contradiction is the main goal of this paper.
will show that the numerically observed oscillations in n
works with delay are long-lasting transients.

In order to study the mechanisms underlying the gene
tion of oscillations in excitatory ring networks, we introduc
the model in Sec. II, then we analyze both the asympt
and the transient regimes of such systems with and with
delay. The study of the asymptotic regime shows the po
bility of unstable periodic oscillations in excitatory rings, b
these do not satisfy property~i! described above, and henc
cannot explain the existence of the oscillations~Sec. III!. A
mechanism for the generation of long-lasting transient os
lations is then proposed which is compatible with the o
served patterns~Sec. IV!. The results are discussed in Sec.

The results presented here generalize our work on
behavior of a single self-exciting neuron@20#, and on exci-
tatory two-neuron networks@21,22#.

II. THE RING NETWORK MODEL

The dynamics of anN-ring neural network is determine
by the following system of delay differential equation
~DDEs!:

e i11

dxi11

dt
~ t !52xi11~ t !1Wi11sa i11

„xi~ t2Ai11!….

~2.1!

In DDE ~2.1!, as well as in all subsequent expressions,
index i is taken moduloN, so that, for instance,xN5x0.
xi(t) represents the activation of uniti at timet, e i.0 char-
acterizes the decay rate of the activation and is referred t
the characteristic charge-discharge time of the neuron,Wi is
the connection weight indicating the influence of uniti21
on unit i , Ai>0 is the transmission delay associated with t
connection, andsa i

is the output function of uniti defined
by

sa~a!5tanh~aa!5
eaa2e2aa

eaa1e2aa . ~2.2!

When all delaysAi are set to zero, interunit transmissio
are instantaneous and DDE~2.1! becomes a set of ordinar
differential equations~ODEs!:

e i11

dxi11

dt
~ t !52xi11~ t !1Wi11sa i11

„xi~ t !…. ~2.3!

An initial condition of DDE ~2.1! is constituted by the
history of the activation of each neuroni during a time in-
terval corresponding to the delayAi11. Initial conditions for
DDE ~2.1! are of the formF5(f0 , . . . ,fN21), where each
f i is a continuous function defined on the interv
e

n

s
l
ne
e
-

a-

ic
ut
i-

l-
-
.
e

e

as

s

l

@2Ai11,0# of length equal to the delayAi11. Thus the
phase space for DDE~2.1! is the product spaceS5
S13•••3SN21, with Si5C(@2Ai11,0#,R), where C(I ,R)
denotes the space of continuous functions from the inte
I on the real lineR. Note that in cases whereAi1150, the
corresponding initial conditionf i is a real number, andSi
can be identified withR. Thus, whenAi50 for all i , we have
S5RN, which corresponds, as expected, to the phase sp
of the ODE~2.3!.

In the following, general results presented for DDE~2.1!
hold whether interunit transmissions are delayed or not,
that no distinction is made between the two cases. W
there are differences between the two, relevant to this w
they are clearly specified so that no confusion arises: syst
~2.1!–~2.3! @to be read system~2.1! and system~2.3!# refer to
both cases with instantaneous and delayed transmiss
DDE ~2.1! refers to the cases where there is at least
delayed connection in the loop, and ODE~2.3! to the cases
where all transmissions are instantaneous.

For F5(f0 , . . . ,fN21) in S, there is a unique
solution of systems ~2.1!–~2.3!, denoted z(t,F)
5„x0(t,F), . . . ,xN21(t,F)…, such that xi(t,F)5f i(t)
for 2Ai11<t<0, and z(t,F) satisfies systems~2.1!–
~2.3! for t>0. We denote byzt the ~semi!flow associ-
ated with systems ~2.1!–~2.3!, that is, zt(F)
5„x1t(F), . . . ,xN21t(F)… and xit(F)(u)5xi(t1u,F) for
all 2Ai11<u<0. To simplify the notations, the dependen
on the initial conditionF will not be indicated unless nec
essary.

We say that systems~2.1!–~2.3! satisfy the positive feed-
back condition whenb5a0W0•••aN21WN21.0. After an
appropriate change of signs of some of the activations, s
tems~2.1!–~2.3! with the positive feedback condition can b
transformed into systems satisfying the more restrictive c
straintC0: a i.0 andWi.0, for all i @5#. From here on we
suppose that systems~2.1!–~2.3! satisfyC0.

A network is referred to as irreducible when there is
directed path linking any two units@5#. In a ring network any
two units are connected through the directed path of conn
tions linking consecutive units, so that ring networks are
reducible.

Besides being irreducible, systems~2.1!–~2.3! have also
the property of being cooperative as defined in@19#. Let f i
from R3R on R be defined as

f i~x,y!5
1

e i
@2x1Wisa i

~y!#. ~2.4!

Then systems~2.1!–~2.3! can be rewritten as

dxi11

dt
~ t !5 f i11„xi11~ t !,xi~ t2Ai11!…. ~2.5!

Under C0, we have (] f i /]y)(x,y)5a iWi@12sa i
2 (y)#.0

for all x, y, and i . Thus systems~2.1!–~2.3! are cooperative
systems@19#.

Under conditionC0, systems~2.1!–~2.3! preserve the or-
der of initial conditions. That is, if an initial condition is
larger than another one then the corresponding solutions
have the same property: the activations corresponding to
larger initial condition remain larger than the ones cor
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sponding to the smaller initial condition. Thus, when plott
on the same graph, the activations of the former rem
above those of the latter.

More precisely, let F5(f0 , . . . ,fN21) and F8
5(f08 , . . . ,fN218 ) be inS, we say thatF is larger~respec-
tively, strictly larger! thanF8, denotedF>F8 ~respectively,
F@F8), if for all i , and for all uP@2Ai11,0#, we have
f i(u)>f i8(u) @respectively,f i(u).f i8(u)#.

Monotonicity. Under conditionC0, systems~2.1!–~2.3!
generate an eventually strongly monotone semiflow, that

for F and F8 in S such thatF>F8 and FÞF8,

we have zt~F!@zt~F8! for all t.2 max ~Ai !.
~2.6!

Proof. This result follows from the cooperative and irr
ducible properties of systems~2.1!–~2.3!, and Theorem 3.4
~p. 88! in @19#. j

III. THE ASYMPTOTIC BEHAVIOR

In the following sections we study successively the lo
linear stability and the global behavior of systems~2.1!–
~2.3!, and characterize the set of oscillating solutions of
citatory ring networks.

A. Linearization

A constant solution of systems~2.1!–~2.3! is referred to
as an equilibrium point. Throughout the rest of the pap
constant functions inS are identified with their value in
RN. Let r5(u0 , . . . ,uN21)PRN, thenz(t)5r is an equilib-
rium of systems~2.1!–~2.3! if and only if r is a root of the
following system:

2ui111Wi11sa i11
~ui !50 for all i . ~3.1!

This system has been studied in@14#. Equation~3.1! has
the unique rootr 050 for b5a0W0•••aN21WN21,1. For
b.1, Eq. ~3.1! has three distinct roots denote
r 152(a0 , . . . ,aN21), r 250, and r 35(a0 , . . . ,aN21),
with ai.0, so thatr 152r 3 and r 3@r 250@r 1. Note that
the system has the same set of equilibria, whatever the v
of the delaysAi .

Local stability. ~i! For b,1, r 050 is locally asymptoti-
cally stable,~ii ! for b.1, r 1 and r 3 are locally asymptoti-
cally stable whiler 250 is unstable.
in

s,

l

-

r,

ue

Proof. Local stability of any of the equilibria, denoted b
r j5(u1 , . . . ,uN) with jP$0,1,2,3% is derived from the study
of the roots of the characteristic equation:

P~l!5 )
i50

N21

~11e il!2be2lt )
i50

N21

s18~a iui21!50,

~3.2!

wheret5A01•••1AN21.
Local stability is ensured when all the eigenvalues of

above characteristic equation~3.2!, associated with system
~2.1!–~2.3! at r j , have strictly negative real parts@23#.When
there is at least one delayed transmission, i.e., there isj such
thatAj.0, the characteristic equation~3.2! is a transcenden
tal equation with infinitely many solutions. However, th
monotonicity property implies that all of its solutions hav
negative real parts if and only if the same holds wh
Ai50 for all i @Corollary 5.2~p. 93! @19# #. In other words,
DDE ~2.1! and its associated ODE~2.3! have exactly the
same set of locally asymptotically stable equilibria. The
fore, in the following, we consider the roots of the polyn
mial P(l) for t50.

ODE ~2.3! is an irreducible cooperative system, thus t
root of the characteristic equation~3.2! with the largest real
part is indeed a real number@Corollary 3.2~p. 60! in @19# #.
Therefore, for the stability analysis, it is sufficient to dete
mine the sign of the largest real root ofP(l). The equilib-
rium point is unstable ifP(l) has a strictly positive root.
P(l) is strictly increasing forl>0, therefore it has a rea
strictly positive root if and only ifP(0),0, that is,

12b)
i50

N21

s18~a iui21!,0. ~3.3!

At the point r j50 we haves18(0)51 so that inequality
~3.3! is equivalent to 1,b, thus proving the statements con
cerning the stability and lack of stability ofr 0 andr 2, respec-
tively. At r 1 and r 3 the study of the solutions of Eq.~3.1!
shows thatb) i50

N21s18(a iui21),1, which proves the state
ments concerning the stability of these two points. j

B. Global analysis

Thanks to the monotonicity of the system it is also po
sible to draw a picture of the global behavior of the traje
tories in the phase space. We first verify that systems~2.1!–
~2.3! satisfy a boundedness condition.

Lemma: boundedness. ~i! For F5(f0 , . . . ,fN21), we
define
F~F!5~ f 0„f0~0!,fN21~2A0!…, . . . ,f N21„fN21~0!,fN22~2AN21!…! in RN, ~3.4!

then,F maps bounded subsets ofS to bounded subsets ofRN. ~ii ! There is a bounded subsetD of S such that for allF in
S, there isT.0 such thatzt(F)PD for all t.T.

Proof. ~i! This point stems from the fact that eachf i maps bounded subsets ofR2 to bounded subsets ofR. ~ii ! We first
remark that forF5(f0 , . . . ,fN21) and C5(c0 , . . . ,cN21) in S such thatF<C and f j (0)5c j (0) for some j
P$0, . . . ,N21% we have f j„f j (0),f j21(2Aj )…< f j„c j (0),c j21(2Aj )…. Moreover, since21<sa i

(a)<1, we have the
following inequalities:

1

e i
~2x2Wi !< f i~x,y!<

1

e i
~2x1Wi !. ~3.5!
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Therefore for allFPS we have

L2~F!<F~F!<L1~F!, ~3.6!

where

L2~F!5S 1e0 @2f0~0!2W0#, . . . ,
1

eN21
@2fN21~0!2WN21# D

and

L1~F!5S 1e0 @2f0~0!1W0#, . . . ,
1

eN21
@2fN21~0!1WN21# D .
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We denote byzt
2 andzt

1 the semiflows associated with th
DDEsdz2/dt5L2(zt

2) anddz1/dt5L1(zt
1), respectively.

Then, from Theorem 1.1~p. 78! in @19#, we obtain
zt

2(F)<zt(F)<zt
1(F) for all t>0. Since zt

2(F)→2W
52(W0 , . . . ,WN21) and zt

1(F)→W5(W0 , . . . ,WN21)
as t→1`, for h5(h0 , . . . ,hN21)@0, andT sufficiently
large, we have2W2h<zt(F)<W1h for all t.T. j

The fact that systems~2.1!–~2.3! are cooperative and ir
reducible together with the previous lemma imply that, wh
they have a unique equilibrium point, all trajectories co
verge to this point@Proposition 4.2~p. 90! @19# #, as follows.

Global asymptotic stability. For b,1, the equilibrium
r 050 is globally asymptotically stable, that is,z(t,F)→r 0
as t→1` for all FPS.

From this point on and throughout the rest of the paper
supposeb.1, so that the system is bistable, i.e., it has t
locally asymptotically stable equilibrium pointsr 1 and r 3.

Again, the fact that the system is cooperative and irred
ible implies that the trajectory of most initial conditions co
verges to eitherr 1 or r 3 @Theorem 4.1~p. 90! @19# #.

Almost convergence. Forb.1, the union of the basins o
attraction ofr 1 and r 3 contains an open dense subset ofS.

We recall that the set of solutions that tend to an equi
rium point is referred to as its basin of attraction.

The complement of the union of the basins of attraction
the two stable equilibria is a negligible set denotedB. Any
neighborhood ofB intersects the union of the two basin
ThusB is the boundary of the two basins. This is describ
more precisely as follows.

The basin boundary. ~i! B divides the phase spaceS into
two regions in the same way a plane divides a thr
dimensional space: Points ‘‘below’’ and ‘‘above’’B form
the basins of attraction ofr 1 andr 3, respectively. More pre-
cisely, let FPB, and F8PS, if F>F8 ~respectively,
F8>F) andFÞF8 thenz(t,F8)→r 1 ~respectively,r 3) as
t→1`. Conversely, letF8PS, if z(t,F8)→r 1 ~respec-
tively, r 3) as t→1`, then there isFPB, such that
F>F8 ~respectively,F8>F) andFÞF8.

~ii ! B is the boundary separating the two basins of attr
tion, that is, every neighborhood ofB intersects both attrac
tion basins.

~iii ! B is unordered in the sense that for two differe
points F and F8 in B, we have neitherF>F8 nor
F8>F. Moreover,B is positively invariant under the sem
flow zt , i.e., if F is in B, then so iszt(F) for all t>0.
n
-

e

c-

-

f

d

-

-

t

~iv! B is a codimension one locally Lipschitz manifol
containing the unstable equilibrium pointr 250 and its stable
manifold.

Proof. We only sketch the proof of statement~i! since
general results on invariant sets can be found in@24,25# and
a detailed proof for two-neuron networks is given in@21#.
Let u be in S, such thatu@0. There exists a continuous
strictly decreasing~with respect to the order defined onS)
map, bu , from S to R such that ~1! for all F in S,
F1bu(F)u is the unique intersection between the line g
ing throughF and directed byu ~i.e., the set$F1lu,l
PR%) with the boundary separating the two basins of attr
tion; ~2! the setB(r 1)5$FPS,bu(F).0% is exactly the
basin of attraction of r 1; ~3! the set B(r 3)5$F
PS,bu(F),0% is exactly the basin of attraction ofr 3; and
~4! the setB5$FPS,bu(F)50% is exactly the boundary
separating the two basins of attraction.

Statement~i! is implied by the above characterization
the attraction basins and the basin boundary in terms of
zeros of the mapbu , with appropriately selectedu.

Statement~ii ! is a direct implication of~i!.
Statements~iii ! and ~iv! result from@25#. j

C. Oscillations on the boundary

We define the notions of weak and strong oscillations
scalar and vectorial functions as in@26#.

Definition 1. Let a:@ t0 ,1`)→R be a continuous func-
tion. We say thata is strictly oscillatory if for everyT>t0
there existT8>T andT9>T such thata(T8)a(T9),0.

Definition 2. Weak oscillations. A solution z(t)
5„x0(t), . . . ,xN21(t)… of systems~2.1!–~2.3! is weakly os-
cillating if there existsT0 such that for allT>T0

inf$xi~s!:s>T, 0< i<N21%

<0<sup$xi~s!:s>T, 0< i<N21%. ~3.7!

The components of a weakly oscillating solution are n
necessarily strictly oscillating scalar functions. In fact, if a
ter some time, the different neuron activations are not al
the same sign, then the corresponding solution is wea
oscillating, even if none of the activations is strictly oscilla
ing.
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Definition 3. Strong oscillations. A solution
z(t)5„x0(t), . . . ,xN21(t)… of systems ~2.1!–~2.3! is
strongly oscillating if each of its componentsxi is strictly
oscillating in the sense of definition 1.

Strong oscillation implies weak oscillations.
Definition 4. Damped oscillations. A solution

z(t)5„x0(t), . . . ,xN21(t)… of systems~2.1!–~2.3! is said to
display damped oscillations if it is weakly oscillating an
z(t)→0 ast→1`.

Weak or strong oscillations that are not damped are
ferred to as undamped oscillations. The following result
deduced from the fact that systems~2.1!–~2.3! are almost
convergent.

Undamped oscillations. Undamped oscillatory solution
of systems~2.1!–~2.3!, if they exist, are necessarily unstabl

We have the following characterization of the dynam
of solutions on the boundaryB.

Weak oscillations. A solution of systems~2.1!–~2.3! is in
B if, and only if, it is weakly oscillating.

Proof.A weakly oscillating solution is not converging t
eitherr 1 or r 3, and belongs therefore to the boundaryB. To
prove the reciprocal we defineK15$FPS,F@0% and
K25$FPS, 0@F% as the positive and negative cones
S, respectively. A givenF is in the basin of attraction o
r 1 ~respectively,r 3) if, and only if, there ist>0 such that
zt(F)PK2 @respectively,zt(F)PK1#. Conversely,F is in
B, if and only if zt(F)¹K1øK2 for any t>0. That is,F is
in B if and only if, for all t>0, there are two integersk and
k8 in $0, . . . ,N21% and two real numbersu and u8 in
@2Ak,0# and @2Ak8,0#, respectively, such tha
xk(t1u)<0<xk8(t1u8). Hence z(t,F) satisfies the in-
equalities~3.7!. j

We present the following examples of weak oscillation
ForN51 andA050, the only weakly oscillating solution is
the constant solution z(t)5r 250. For N52, with
A05A150, if z(t)Þr 2 is weakly oscillating then
x0(t)3x1(t),0 for all tPR, so that neitherx0(t) nor
x1(t) change signs. Hence the solutionz(t) is not strongly
oscillating. However, for delayed interunit transmissi
times, using@26#, we have the following result~the proof is
given in Appendix C!.

Strong oscillations. Assume that there isj such that
Aj.0, that the characteristic equation of DDE~2.1! at r 2 has
no root with zero real part, and thate i,u for all i , where
u is the unique solution of

11
N

t
uF12 lnS N

tb1/N
u D G50, ~3.8!

then all solutions inB2$r 2% are strongly oscillating.
Therefore, when interunit transmissions are delayed,

the characteristic charge-discharge times of the neurons
small enough, the components of a weakly oscillating n
constant solution are necessarily strictly oscillating sca
functions. For instance, forN51, any nonzero solution o
DDE ~2.1! in B changes signs at least once in any interva
length equal to the delay.

The condition e i,u on the characteristic charge
discharge time is important to ensure strong oscillatio
This is illustrated in Fig. 2 showing the activations of a
excitatory ring network composed of two identical neuro
-
s

.

d
re
-
r

f

s.

s

(e05e1, a05a155) connected through symmetrica
weights and delays (W05W154, A05A151) for the initial
condition F5(f0 ,f1), with f0(u)52f1(u)521. The
corresponding solutionz(t,F) is in B, since the system is
invariant under the transformationx0→x1, x1→x0, implying
that initial conditionsC5(c0 ,c1) such thatc052c1 lie
on the boundaryB, giving rise to weakly oscillating solu-
tions. The upper panel shows the time course of the act
tions for e05e15100 larger thanu.55. It can be seen tha
the two activationsx0 andx1 are of opposite signs, so tha
z(t) is weakly oscillating. Yet neitherx0 nor x1 is strictly
oscillating, hencez(t) is not strongly oscillating. However
in the lower panel of Fig. 2, it is shown that, as predicted
the result stated above, whene is small enough
(e05e1510 smaller thanu.55), the solution of the same
initial condition is strongly oscillating.

We have seen that the solutions on the boundary are
cillating either weakly or strongly. These can be damped
the unstable equilibrium pointr 2 as shown, for example, in
the upper panel of Fig. 2. The following result concerns u
damped oscillations~the proof is given in Appendix D!.

Periodic oscillations. We assume the same conditions
the statement ‘‘Strong oscillations.’’ Then, undamped os

FIG. 2. Weak and strong oscillations. Examples of weakly~up-
per panel! and strongly~lower panel! oscillating solutions, for an
excitatory two-neuron ring network. Parameters:e5100 ~upper
panel!, e510 ~lower panel!, W05W154, a05a155, A0

5A151. Initial conditionsf0(u)52f1(u)521 for 21<u<0.
Abscissas: time~dimensionless, rescaled to the delay!; ordinates:
activation~dimensionless!.
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3240 55K. PAKDAMAN et al.
lations, when they exist, are asymptotically periodic.
This result shows thatB is exactly the union of the stable

manifold of r 250 with those of unstable periodic orbits
when they exist. This is schematically illustrated in Fig. 3
The phase space of the system is represented by the thr
dimensional space, the gray surface that divides the plan
into two regions isB, which containsr 2, an unstable periodic
orbit ~the closed curve!, to which some solutions on the
boundary tend. The regions below and above the gray su
face are the basins of attraction of the stable equilibriar 1 and
r 3, respectively.

As the output functionssa i
are odd, the periodic solutions

of the system, when they exist, are symmetrical in the fol
lowing sense@18#: let z be a periodic solution of Eq.~2.1!
with periodT, thenz(t1T/2)52z(t) for all t>0. Clearly
this is not the case for the solution presented in Fig. 1. Ther
fore the presence of oscillations of the type displayed in Fig
1 cannot be explained by the analysis of the asymptotic b
havior of the system. Such oscillations can only be transien
lasting longer than the experimental and numerical observ
tion window. This point is addressed in the following sec-
tion.

IV. THE TRANSIENT BEHAVIOR

In the following sections we study the transient dynamic
of solutions of systems~2.1!–~2.3!. We show that, in contrast
with the asymptotic behavior which did not depend on the
delay, the transient regime of the system with instantaneou
interunit transmission@ODE ~2.3!# greatly differs from that
of the system with delayed interunit transmission@DDE
~2.1!#.

For a solution of systems~2.1!–~2.3! converging to an
equilibrium point, the transient regime refers to the dynamic

FIG. 3. Schematic phase portrait of an excitatory ring network
The phase space of a ring network is represented by a thre
dimensional space, in which the three equilibriar 1, r 2, and r 3 are
positioned. The gray surface represents the boundary separating
basins of attraction ofr 1 and r 3. This boundary contains the un-
stable pointr 2 together with an unstable closed orbit.
.
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before the system reaches a state that cannot be distingu
from the equilibrium point, within some given precisio
Once the system is in the neighborhood of one of the sta
equilibria, its convergence speed is determined by the c
acteristic return time defined as 1/uR(l)u, wherel is the root
of the characteristic equation~3.2! with the largest real par
denoted byR(l) @27#. For systems~2.1!–~2.3!, l is real
negative at the stable equilibria.

The map fromK1 to R`, that toE5(e0 , . . . ,eN21) as-
sociates 1/ul(E)u, the absolute value of the inverse of th
real eigenvalue of characteristic equation~3.2!, is strictly in-
creasing~with respect to the order inK1). AsE decreases to
zero, the characteristic return~or escape! time decreases to a
positive limit,q>0, whose value depends on the equilibriu
point. In other words,

1/ul~E!u→q>0 as E→~0, . . . ,0!, EPK1 .

Therefore, close to the equilibria, the return and esc
times decrease and the system is accelerated whenE tends to
zero. When interunit transmissions are instantaneous~i.e.,
Ai50 for all i ) q50, whereas when at least one of th
transmissions is delayed~i.e., there isj such thatAj.0), we
haveq.0. This shows that the system without delay@ODE
~2.3!# responds instantaneously to a small perturbation n
an equilibrium, asE→0, whereas in the presence of dela
the system@DDE ~2.1!# responds in a finite time, no matte
how smallE is.

The local analysis presented above is extended to the
bal transient behavior of the system in the following se
tions. Cases without and with interunit transmission dela
are treated separately, because they present important d
ences.

A. Instantaneous interunit transmission

We consider the case whereAi50, and e i5h ie, with
h i.0 fixed for all i . Under this condition, rescaling the tim
to t85t/e transforms ODE~2.3! into a similar ring network,
with the same weightsWi and gainsa i . Only all e i are set to
h i . This shows that the trajectories of solutions of OD
~2.3! in the phase spaceRN are independent of the paramet
e. Therefore this parameter does not affect the geometr
aspect of the phase portrait of ODE~2.3!. However, the
speed with which the state of the system evolves alon
given trajectory increases ase is decreased. This is illus
trated in Fig. 4~A!, which shows the temporal evolutions o
x0 andx1 in its left-hand side panel, and the correspondi
trajectory inR2 in its right-hand side panel, for a symmetric
two-neuron ring network~i.e., h05h151, W05W154,
a05a155) for two values ofe (5 and 0.4). The solutions
with e55 take longer to reach their steady states than th
with e50.4 ~panel on the left!. Nevertheless, both solution
move along the same trajectory in the phase space~panel on
the right!.

B. Delayed interunit transmission

When there isj such thatAj.0, the transient regime of a
trajectory converging to an equilibrium may drastica
change asE5(e0 , . . . ,eN21) is decreased to 0. This is il
lustrated in Figs. 4~B!–4~D!, which represent the time cours

.
e-

the
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FIG. 4. Transient behavior. Time course~panels on the left! and trajectories in thex0 ,x1 plane~panels on the right! for an excitatory
two-neuron ring network, without~A! and with delay~B!, ~C!, ~D!, for different values of the characteristic charge-discharge timee. ~A!
Dashed linese05e155, solid linese05e150.4, ~B! e05e155, ~C! e05e150.4, ~D! e05e150.01. In the panels on the left, thick and th
lines representx0 and x1, respectively. In ~D! only x0 is represented. Parameters:W05W154, a05a155; uppermost panels
A05A150, other panelsA05A151. Initial conditions: uppermost panels (f0 ,f1)5(21,2), other panels,„f0(u),f1(u)…5(21,2) for
21<u<0. Panels on the left, abscissae: time~dimensionless, rescaled to the delay!; ordinates: activation~dimensionless!. Panels on the
right, abscissa: activationx0; ordinates: activationx1, both dimensionless.
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of activations of a two-neuron network forE5(5,5) @Fig.
4~B!#, E5(0.4,0.4) @Fig. 4~C!#, and E5(0.01,0.01)
@Fig. 4~D!# for the same initial condition
@„f0(u),f1(u)…5(21,2)#. We are dealing with the sam
two-neuron network as in Fig. 2, described in Sec. III
Thus considerations on the symmetry of the system sh
that this initial condition lies in the basin of attraction
r 3, so that its trajectory will eventually tend to this equilib
rium point. It can be seen that, for largeE, this solution of
DDE ~2.1! resembles the corresponding solution of OD
~2.3! and converges rapidly@compare Fig. 4~A! and Fig.
4~B!#. As E is decreased, it displays, first, transient oscil
tions during a short time@Fig. 4~C!#, and, then, square-wave
like oscillations that outlast the observation window@Fig.
4~D!#, only x0 is shown#. Only thea priori knowledge that
the point is in the basin of attraction ofr 3 allows us to state
that these oscillations are transient. The change of beha
asE is decreased, is also reflected in the trajectories in
(x0 ,x1) plane as shown in the panels on the right in Fi
4~B!–4~D!, where the lowest panel is reminiscent of the p
jection of a closed orbit, even though the corresponding
jectory will eventually converge tor 3.

The following analysis provides a heuristic explanati
for the delay-induced transient oscillations. The two-neu
network of the example above is described by

e
d

dt
x0~ t !52x0~ t !1Wsa„x1~ t21!…,

e
d

dt
x1~ t !52x1~ t !1Wsa„x0~ t21!…, ~4.1!

wheree.0, b5(aW)2.1. In the limit e→0 the dynamics
of this system is formally described by the following syste
of difference equations~DE!:

x0~ t !5Wsa„x1~ t21!…,

x1~ t !5Wsa„x0~ t21!…, ~4.2!

or its discrete-time version,

x0~n!5Wsa„x1~n21!…,

x1~n!5Wsa„x0~n21!…, ~4.3!

wheren51,2, . . . . The global dynamics of Eq.~4.3! can be
easily analyzed. Let us denote bya the positive root of the
equationa2Wsa(a)50. As b.1, the map~4.3! has three
fixed pointsr 15(2a,2a), r 25(0,0), andr 35(a,a). The
fixed pointsr 1 and r 3 are stable and attract all initial cond
tions (x0 ,x1) satisfying x0,0,x1,0 and x0.0,x1.0, re-
spectively. Using the fact thatsa is an odd function, it can
be shown that Eq.~4.3! has a stable periodic orbit of perio
2 given by the points (2a,a) and (a,2a). This periodic
orbit attracts all initial conditions (x0 ,x1) that satisfy
x0x1,0 @to see this, notice that x0(n12)
5Wsa(Wsa„x0(n)…), x1(n12)5Wsa(Wsa„x1(n)…)#.
Now, let us consider DDE~4.1! with e small. For an initial
conditionF5(f0 ,f1) that is sufficiently smooth~namely,
udf0 /dtu,udf1 /dtu are much smaller thane) the left-hand
side of Eq.~4.1! can be neglected so that the dynamics of E
.
w

-

or,
e
.
-
-

n

.

~4.1! is approximated by the dynamics of Eq.~4.2!. This
approximation is valid provided the absolute values of
derivatives of the solutionz(t,F) of Eq. ~4.1! remain much
smaller thane. The dynamical properties of map~4.3! imply
that if the initial conditionF satisfiesF!0 (F@0) then the
solution of the DE~4.2! tends tor 1 (r 3). This is in perfect
agreement with the asymptotic behavior of DDE~4.1!. So,
for initial conditions that satisfy eitherF!0 or F@0, the
transient regime ofz(t,F) is essentially determined by th
map ~4.3! and is independent ofe.

Now, consider an initial conditionF5(f0 ,f1) such that
f0,0 andf1.0, such as the one used in Fig. 4. In th
case, as can be seen in Fig. 4~D! which shows the time
course ofx0, the solutionz(t,F) of the DDE~4.1! is initially
attracted to the period-2 square-wave solution of the
~4.2! given by

x0~ t !5a, x1~ t !52a, tP~2n,2n11!, n50,1,2, . . .

x0~ t !52a, x1~ t !5a, tP~2n11,2n12!, n50,1,2,. . . .

Since this square wave is discontinuous at integer tim
there will be values oft @the zeros ofz(t,F)# where the
derivatives ofz(t,F) will be large. Close to these point
~and only close to them! the approximation of the DDE~4.1!
by the DE~4.2! breaks down. Due to the existence of the
points, the effect of the right-hand side of DDE~4.1! will be,
for most initial conditions, to eliminate very slowly the zero
of z(t,F). So z(t,F) will eventually tend to eitherr 1 or
r 3. We can summarize this argument by saying that the lo
transient behavior observed inz(t,F) is due to the competi-
tion between the two antagonistic asymptotic behaviors
the DDE ~4.1! and of its formal limit, the DE~4.2!, as e
tends to zero. More general oscillatory initial conditions w
display the same behavior.

The following mathematical result corroborates the he
ristic analysis presented above. It constitutes a generaliza
of the analysis of the scalar DDE presented in@28# to the
case of systems of DDEs. In order to present this result
introduce the system of DEs that is obtained from DDE~2.1!
by rescaling the delays~Appendix B!, and settingE50:

xi11~ t !5Wi11sa i11
„xi~ t21!…. ~4.4!

We denote byz(E,t,F) the solution of DDE ~2.1!,
rescaled such that allAi51 ~Appendix B!, with
E5(e0 , . . . ,eN21)@(0, . . . ,0), andz(0,t,F) the solution
of DE ~4.4!, obtained by settinge i50 for all i . The solutions
of Eq. ~4.4! are double valued at integer times unle
the initial condition F satisfies f i11(0)
5Wi11sa i11

„f i(21)…. Then we have the following result

Transient behavior. ForT.0, h.0, andFPS such that
f i11(0)5Wi11sa i11

„f i(21)…, there existsE0@0 such that

for all 0<E<E0, uuz(E,t,F)2z(0,t,F)uu,h for all
0<t<T.

The constraint on the value of the initial condition at
can be relaxed. For arbitrary initial conditions inS, the so-
lution of DDE ~2.1! remains transiently close to the solutio
of DE ~4.4!, except nearby integer time values.
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This result indicates that, for small enoughE, the solu-
tions of Eq.~2.1! remain close to those of Eq.~4.4! for some
transient time whose length depends on the initial conditi

In contrast with DDE~2.1!, which does not have an
stable nonconstant periodic solution, DE~4.4! has infinitely
many periodic solutions with non-negligible basins of attra
tion ~Appendix E!. For these initial conditions, each activ
tion tends to a periodic square-wave-like oscillation, t
jumps between lower and upper parts of the wave appea
at integer multiples of the period added to the times of s
changes in the initial condition. Thus the basins of attract
of the periodic oscillations and their boundaries cover the
of weakly oscillating initial conditions, so that, for any suc
initial condition, and for small enoughE, the corresponding
solution of DDE~2.1! displays transient oscillations reminis
cent of those of DE~4.4!.

C. Transient regime duration

For excitatory ring networks with instantaneous transm
sion times, the transient regime duration~TRD! of any con-
verging trajectory is proportional toe ~where the character
istic charge-discharge time aree i5eh i as defined in Sec
IV A !. Thus the TRD decreases linearly to zero ase→0.
This is illustrated by the thick straight line in Fig. 5 th
shows the TRD as a function ofe, for the two-neuron net-
work and initial condition used in Fig. 4~A!.

For the same network with delayed interunit transmissi
the TRD ~thin line in Fig. 5! is close to that of the system
without delay~thick straight line! for largee. The TRD is in
fact almost linear fore large enough. This is in accord wit
the fact that the trajectories of the networks with and with
delay are similar for largee @Figs. 4~A! and 4~B!#. However,
for small e, the TRD of the system with delay increas

FIG. 5. Transient regime duration. Transient regime duration
the system without delay~thick line! and the system with delay
~thin line! as a function of the characteristic charge-discharge t
e for an excitatory two-neuron network. Parameters:W05W154,
a05a155, A05A150 for the system without delay an
A05A151 for the system with delay. Initial condition
(f0 ,f1)5(21,2), for the system without delay, an
„f0(u),f1(u)…5(21,2), for21<u<0 for the system with delay
Abscissa: charge-discharge time of the neuronse ~dimensionless,
rescaled to the delay!; ordinates: transient regime duration~dimen-
sionless, rescaled to the delay!.
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abruptly ase is decreased towards zero. Fore small enough,
the curve representing the TRD as a function ofe can be
fitted by an exponential function of 1/e. The sharp increase
in the TRD corresponds to the onset of transient oscillatio
It indicates the time interval during which the solution
DDE ~2.1! remains close to the corresponding solution of t
discrete-time network given by DE~4.4!.

The above numerical results are in accord with analyti
results obtained for two-neuron networks with piecew
constant output functions@22#.

V. DISCUSSION

We have studied the asymptotic and the transient dyn
ics of excitatory ring networks of GRNs in order to bett
understand the mechanisms underlying the onset of osc
tions in such networks with delay.

Excitatory ring networks may display unstable, nonco
stant, periodic orbits. These have been reported for ri
with five units@29# or more~i.e.,N>5), with instantaneous
transmission times, and for scalar DDEs with delay@30–32#
~i.e.,N>1). Yet, as argued in Sec. III, the existence of the
periodic orbits does not explain the presence of oscillati
such as those displayed in Fig. 1, providing strong supp
for the hypothesis that the observed oscillations are trans
We argue in the following that the proposed mechanism
cording to which the system with delay behaves transien
as a discrete-time network, and asymptotically as
continuous-time network without delay, accounts for t
properties of the oscillations observed numerically. We w
focus on the two main characteristics of such oscillatio
already mentioned in the Introduction, and we show h
each one is compatible with the proposed mechanism.

~i! When the network is initialized with oscillating activa
tions, it displays periodic oscillations for small enough ch
acteristic charge-discharge time of the neurons.

According to our analysis, these periodic oscillations c
respond to trajectories of the continuous-time network w
delay transiently attracted to periodic orbits of the discre
time network. The trajectories susceptible to displaying su
behavior lie in the basin of attraction~for the discrete-time
network! of periodic orbits. The union of these basins
attraction, and their boundaries, corresponds exactly to
set of oscillating initial conditions.

The main point is that the oscillations constitute lon
lasting transients. The time interval during which the traje
tory of a given oscillating initial condition displays oscilla
tions is also the time during which it remains close to t
orbit of the corresponding trajectory of the discrete-time n
work. This time interval depends on the initial condition a
also on the parameterE, representing the charge-dischar
time of the neurons. AsE is decreased, the duration of th
oscillation increases exponentially. In other words, the so
tion of an oscillating initial condition displays transient o
cillations, whose duration increases exponentially asE tends
to zero. Thus, for small enoughE, any reasonable observa
tion window is shorter than the duration of these transi
oscillations, making them indistinguishable from stationa
oscillations.

~ii ! Similar oscillations do not occur in excitatory rin
networks with instantaneous transmission times.
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3244 55K. PAKDAMAN et al.
For special ranges of parameters an excitatory ring
work without delay displays unstable periodic orbits. By s
lecting an initial condition close to the stable manifold
such a periodic solution, it is possible to observe a lo
lasting transient oscillation followed by the convergence
the solution to one of the stable equilibria. So, for the syst
without delay, there is a set of initial conditions with tra
sient oscillatory trajectories. Yet, this set does not depend
the value of the parameterE. Moreover, even for such initia
conditions, the duration of the transient regime tends linea
to zero asE is decreased. Clearly, excitatory ring networ
without delay, no matter the number of units they contain,
not display long-lasting transient oscillations for oscillati
initial conditions as the characteristic charge-discharge t
is decreased.

General considerations

Transient regimes have received little attention compa
to steady states in theoretical studies of neural network m
els. The description of the asymptotic behavior of the sys
provides invaluable information about the transients but
shown in our work, this is not always sufficient to accou
for some of the important aspects in the system’s dynam
Theoretical studies of transients can help in better und
standing nervous system operation. Experimentalists h
long recognized the importance of transients in neural beh
ior as a means to convey information about environmenta
well as internal changes~e.g., @33#!. The information con-
tained in the transient regime is all the more important wh
the system evolves in rapidly changing environments wh
the neural networks involved in information processing
not dispose of the time lapse necessary to reach a statio
regime.

Living neurons act collectively on target neuron
muscles, etc. The output of such assemblies is a grade
sponse observed, for instance, when recording the action
tential of nervous trunks~neurogram!. GRNs model the ac-
tivity of such neuron assemblies@10#. Determining the
different parameters that shape the transient behavior of
neural network models is thus important for understand
how nervous systems operate. The study of the dynamic
GRN ring networks shows that converging neuronal n
works may display oscillating transients during extrem
long time intervals. In fact, these transients can be so l
that, practically, the system will not reach its stationary
gime during the observation window.

Overall oscillatory patterns are frequently observed in
activity of nervous systems. Their roles are either clear a
respiration, where they control motor activity, or une
plained as in the electroencephalogram where they are ap
ently related to the brain information processing in a s
obscure way. Overall oscillatory patterns are observed w
units discharge periodically and synchronously. It has b
proposed that the latter could be important in a numbe
functions such as in coordination of motor acts and inform
tion processing~e.g., @34#!. The long-lasting transient oscil
lations in excitatory rings of GRNs arise thanks to the pr
ence of interunit transmission delays, and are also expe
to occur in other network architectures. In living nervo
systems, delays are ubiquitous, ranging from a few to sev
hundreds of milliseconds. They are due to action poten
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propagation along axons, synaptic delay, etc. Delay-indu
long-lasting transient oscillations could thus take part in va
ous nervous system operations.

In ANN applications relying on the convergence of th
network to a steady state, control over the transient regim
also an important issue. Large increase in the transient
gime duration, such as those observed in the networks s
ied here, can seriously deteriorate the network’s performa
by slowing down the system. Our analysis shows that
presence of delay-induced long-lasting transients can be
dicted by the analysis of the dynamics of the associa
discrete-time network.

VI. CONCLUSION

We have studied the behavior of excitatory GRN ri
networks. We have shown that for instantaneous as we
delayed interunit transmission, most trajectories tend to e
librium points, and that the remaining ones oscillate arou
an unstable equilibrium point. When interunit transmissio
are delayed, the system may display long-lasting trans
oscillations, which can be analyzed through the study of
behavior of the corresponding discrete-time network. In t
sense, the behavior of the ring network with delay is int
mediate between the behavior of the system without de
and that of the discrete-time network. These theoretical
sults are important to complement the experimental and
merical observations made in circuits and digital compute
in order to better understand the mechanisms underlying
system’s dynamics.

Note added in proofTheoretical analysis of the effect o
delay on neural network dynamics is currently an active fi
of study, and recently some additional results have been p
lished that we would like to mention.

The two following references deal with the influence
delay on the asymptoic behavior in a model of a single n
ron and a network of spiking neurons with delayed recurr
excitatory connection@J. Foss, A. Longtin, B. Mensour, an
J. Milton, Phys. Rev. Lett.76, 708~1996!; W. Gerstner, J. L.
Van Hemmen, and J. D. Cowan, Neural Comput.8, 1653
~1996!#. They are complementary to the publications cited
@3#.

Results concerning the asymptotic behavior
continuous-time GNRs in the presence of delay are also
sented@Y. J. Cao and Q. H. Wu, IEEE Trans. Neural Netw
7, 1533 ~1996!; Y. Zhang, Int. J. Syst. Sci.27, 227 ~1996!;
Y. Zhang, S. M. Zhong, and Z. L. Li,ibid. 27, 895~1996!; L.
Olien and J. Be´lair, Physica D~to be published!#. These are
complementary to the publications cited in@9#. We became
aware that a result, concerning the asymtotic behavior
continuous-time excitatory ring neural netowrks with dela
similiar to the statementAlmost convergencein our paper,
was independently, and prior to our work, proven@P. Baldi
and A. Atyia, IEEE Trans. Neural Netw.5, 612 ~1994!#.
They also mentioned the existence of transient oscillati
based on numerical investigations. Our analysis takes th
results further by providing a description of the basin boun
ary ~statement,The basin boundary! and unstable oscilla-
tions ~Sec. IIIC!, as well as elucidating the mechanisms u
derlying transient oscillations~Sec. IV!.
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APPENDIX A: NUMERICAL INTEGRATION METHODS

Two numerical integration methods were used to inve
gate the dynamics of DDE~2.1!. Both methods were applie
to the system after rescaling all delays to one~Appendix B!.

The first method is the Gear predictor-corrector form
@35# adapted for the special case of DDE~2.1! for which the
nonlinear term is delayed. In this particular case only
corrector formula is required.

The second method consists in writing solutions of DD
~2.1! in integral form, and then evaluating the integral usi
a trapezoidal approximation~e.g.,@36#!.

For both methods, the time steps used depended on
the system parameters and the initial conditions. The con
gence of the solutions was checked.

APPENDIX B: RESCALING THE DELAYS

We consider Eq.~2.1! with delayed interunit transmission
It is possible to reindex the variables so thatA0.0 and
A0>A1>•••>AN21>0. Let A5(A01•••1AN21)/N,
K050, Kp5pA2(A11•••1Ap) for 1<p<N21, and
ui(t)5xi(t2Ki). Then the variablesui satisfy DDE ~2.1!
with Ai5A for all i . By rescaling the time unit to the dela
A that is t85t/A, e i85e i /A, the new variablesyi(t8)
5ui(t/A) satisfy the following system of delay differentia
equations:

e i118
dyi11

dt8
~ t8!52yi11~ t8!1Wi11sa i11

„yi~ t821!….

~B1!

APPENDIX C: PROOF THAT WEAK OSCILLATIONS
IMPLY STRONG OSCILLATIONS

In order to prove that weak oscillations imply strong o
cillations, we show that DDE~2.1! satisfies the hypothese
d
.

i-

e

th
r-

-

~H1!–~H5! given below@26#. Without loss of generality we
can consider that all delays equal one, that is,Ai51 for all
i in DDE ~2.1! ~see Appendix B!.

We rewrite DDE~2.1! as

dzt /dt5F~zt!, ~C1!

where F from S to RN is defined by F(F)
5„f 0(F), . . . ,f N21(F)…, with

f i~F!52f i~0!1Wisa i
„f i21~21!…/e i .

F satisfies the following hypothesis.
Hypothesis (H1). Fis continuous on its domain, send

bounded sets ofS into bounded sets ofRN, and is such that
DDE ~2.1! has one and only one solution starting from a
given dataFPS. For every pairF, C in S, such that
F<C andF(0)5C(0), wehaveF(F)<F(C).

In Sec. II, statementmonotonicityshows that the follow-
ing hypothesis is satisfied.

Hypothesis (H2).DDE ~2.1! is strongly monotone, in the
sense that it verifies~H1! and forF<C andFÞC, there is
t1>0 such thatzt(F)!zt(C) for all t>t1.

We assume thate i,u for all i , whereu is the unique
solution of

–11
N

t
uF12 lnS N

tb1/N
u D G50.

Then, the analysis of the real roots of the characteristic eq
tion ~3.2! leads to Hypothesis~H3!.

Hypothesis (H3).The characteristic equation~3.2! has one
and only one real root. This root has multiplicity one.

Hypothesis (H4).Let z be a solution of DDE~2.1! such
that z oscillates weakly and does not oscillate strongly, th
z(t)→0, ast→1`.

Proof. Let us verify that DDE~2.1! satisfies~H4!. Let
z5(x0 , . . . ,xN21) be a weakly oscillating solution of DDE
~2.1! such thatxi(t)Þ0, for all t>T and all i . There is nec-
essarily j , such thatxj (t),0 andxj11(t).0 for all t>T.
Thusxj11(t) is a strictly decreasing bounded function, a
we havexj11(t)→ l j11 with l j11>0, ast→1`. From this
we derive that for allk
xj1k~ t !→ l j1k as t→1`, where l j1k5Wj1ksa j1k
~Wj1k21sa j1k21

„•••Wj12sa j12
~ l j11!…!>0. ~C2!

In particular, for k5N21, we get xj (t)→ l j>0, hencel j50, and consequentlyl i50 for all i . Thus z(t)→0, as
t→1`. j

We rewrite Eq.~2.1! as

dz

dt
5Lzt1 f ~zt!, ~C3!

whereL:S→RN is the linear map defined byL(F)5MF(21)1M 8F(0), with M andM 8, two N3N matrices defined as
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M51
0 ••• 0

a0W0

e0

a1W1

e1
0 ••• 0

0
a2W2

e2
0 ••• 0

A ••• A

0 •••

aN21WN21

eN21
0

2 , M 85diagS 21

e0
, . . . ,

21

eN21
D ~C4!
n

m
ng

c
nd
v
ge
he
g

su-
ng

on
s
g
o-
ec-
-
n

all
pe-
its
ith
in

for

ani-

f
-
3.3
al
-
e

f
t
to
e

and f5( f 0 , . . . ,f N21):S→RN is the map defined by

f i11~F!5
Wi11

e i11
@sa i11

„f i~21!…2a i11f i~21!#.

~C5!

For Y5(y0 , . . . ,yN21)PRN, we denote by uuYuu
5uy0u1•••1uyN21u. Let W5maxi(uWi /e i u) and
a5maxi(ua i u) andg:R→R the real function defined by

g~u!5NW„au2sa~u!…. ~C6!

We haveg(u)/u→0 asu→0 and

uu f ~F!uu<g„uuF~21!uu…. ~C7!

The linear partL satisfies the following hypothesis.
Hypothesis (H58). L(F)5MF(21)1*211

0 dh(u)F(u),
whereM is nonsingular, and*211

0 dh(u)F(u)5NF(0).
The nonlinear partf satisfies the following hypothesis.
Hypothesis (H59). For the nonlinear partf of DDE ~2.1!,

there exists a functiong defined fromR` into R` such that
g(u)/u→0 asu→0 anduu f (F)uu<g„uuF~21!uu….

Thus Proposition 5~p. 278! in @26#, implies that DDE
~2.1! satisfies the following hypothesis.

Hypothesis (H5). DDE ~2.1! does not have any solutio
z such that each component ofz is Þ0 for eacht large
enough andz(t)→0 faster than any exponential ast→1`.

Moreover, from Eq.~C7! we deduce that

uu f ~F!uu5O~ uuFuu`
3 !. ~C8!

We have thus checked all the hypotheses of Theore
~p. 281! in @26# showing that the notions of weak and stro
oscillations coincide.

APPENDIX D: PERIODIC OSCILLATIONS

Monotone cyclic feedback systems such as systems~2.1!–
~2.3! admit a discrete Lyapunov function, denotedV
@15,17,18#. We present some of the properties of this fun
tion that are useful in the following. Rigorous definitions a
analyses can be found in the original papers cited abo
This Lyapunov function counts the number of sign chan
of the activations during an interval of length equal to t
delay plus those between activations. Therefore it is inte
3

-

e.
s

er

valued. It decreases along trajectories of systems~2.1!–~2.3!,
hence the reference to Lyapunov functions, which are u
ally continuous valued energy functions decreasing alo
trajectories of many physical systems.

One important implication of the existence of the functi
V is that the Poincare´-Bendixson theorem holds for system
~2.1!–~2.3! @15,18#. In other words, the dynamics of rin
networks cannot be more complex than that of tw
dimensional systems. More precisely, this implies that traj
tories on the boundaryB tend either to the unstable equilib
rium pointr 2, are asymptotically periodic, or ‘‘approach’’ a
orbit homoclinic tor 2, that is, an orbit that starts atr 2 and
moves back to the same point. Therefore, to show that
undamped solutions on the boundary are asymptotically
riodic, we need to prove that there are no homoclinic orb
throughr 2. This result has been proved for scalar DDEs w
monotone feedback@37#. We use the same method as
those papers, which was also applied in@30,31#. It consists in
showing that the value of the discrete Lyapunov function
any nontrivial solution tending tor 2 ast→1` is larger than
its value for any nontrivial solution tending tor 2 as
t→2`. Thus if there is a nontrivial solution connectingr 2
to itself, the discrete Lyapunov functionV would be increas-
ing along this solution, which contradicts the fact thatV is
decreasing along any trajectory.

We consider the cases ofz(t)→r 2 as t→2` and as
t→` separately.

Let us assume thatz(t) is a solution of DDE~2.1! tending
to r 2 as t→2`. Then, by definition,z(t) is in the unstable
manifold of r 2. In the vicinity of r 2, this manifold is finite
dimensional and can be approximated by the unstable m
fold of the linearized equation atr 2. Thus fort negative with
utu large enough,z(t) is close to a fundamental solution o
the DDE ~2.1! linearized atr 2. For such solutions, the dis
crete Lyapunov function has been estimated in Corollary
~p. 404! in @17#. It should be noted that the fundament
solution associated toz as t→2` corresponds to an eigen
value l of the characteristic equation with strictly positiv
real part.

A solutionz8(t) of DDE ~2.1! tending tor 2 ast→1` is
within the stable manifold ofr 2. The associated manifold o
the linearized equation atr 2 is infinite dimensional so tha
z8 may tend tor 2 faster than any exponential. Yet, thanks
Hypothesis~H5! in Appendix C, we know that this is not th
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case and thatz8 is close to a fundamental solution of th
DDE ~2.1! linearized atr 2. ThusV„z8(t)… as t→1` is also
estimated thanks to Corollary 3.3~p. 404! in @17#.

The important difference between the two cases is that
z8 the real part of the eigenvaluel8 of the characteristic
equation is strictly negative. Hence we have necessa
l8,l, which from the estimates in@17# implies that
V(z),V(z8), which finishes the proof that there are no h
moclinic orbits throughr 2.

APPENDIX E: ASYMPTOTIC BEHAVIOR
OF THE DISCRETE-TIME N-RING NETWORK

The asymptotic behavior of DE~4.4! for initial conditions
in S is derived from the description given in@14#. We intro-
duce the following notations. Ford5(d0 , . . . ,dN21) such
that d iP$21,0,11%, we define the shift of orderi by
si(d)5(d i ,d i11 , . . . ,d i21), andk(d).0 the lowest strictly
positive integer such thatsk(d)5d. Ford such thatd iÞ0, for
all i , we denote by Kd the cone in RN defined
by Kd5$x5(x0 , . . . ,xN21)PRN:d ixi.0 0< i<N21%,
and byWd the wedge inRN defined byWd5KdøK2d .
There are 2N such cones and 2N21 wedges. We denote b
W the union of the wedges. The complement of the union
the wedges is formed by the unionH of N hyperplanesHi in
RN defined byHi5$x5(x0 , . . . ,xN21)PRN:xi50%.
,

D
ry
or

ly

-

f

We recall that the equilibria of DDE~2.1! are denoted by
r 152(a0 , . . . ,aN21), r 250, and r 35(a0 , . . . ,aN21),
with ai.0. These are also the equilibria of DE~4.4!. Let
d be defined as above, then the solutionz(0,t,Pd) of
DE ~4.4! with initial condition PdPS defined
by Pi(u)5d iai is k(d) periodic with z(0,t,Pd)
5(d ia0 ,d i11a1 , . . . ,d i21aN21) for all i211nk(d)
<t< i1nk(d) with 0< i,k(d) andn>0.

Asymptotic behavior of solutions of DE (4.4). Let FPS,
~1! If F(u)PW for all 21<u<0, then there isd with d i
Þ0 for all i , such that z(0,t,F)PKsi (d)

for all
i211nk(d)<t< i1nk(d) with 0< i,k(d) and n>0,
moreover, ast increases to infinity,z(0,t,F) tends to the
k(d) periodic solutionz(0,t,Pd); ~2! in the same way if
F(u)PHj for all 21<u<0, there isd with d j50, such
thatz(0,t,F)PHj1 i for all i211nk(d)<t< i1nk(d) with
0< i,k(d) and n>0, moreover, ast increases to infinity,
z(0,t,F) tends to thek(d) periodic solutionz(0,t,Pd); and
~3! for arbitraryFPS, we haveF21(W)5ø iPI( l i ,l i8), and
F21(H)5 jPJ@mj ,mj8#, with F@( l i ,l i8)#,Kd , for somed
with d iÞ0, and F@(mi ,mi8)#,Hk for some k
P$0, . . . ,N21%. The analysis performed in the two prev
ous cases shows that foruP(mi ,mi8) @respectively, u
P( l i ,l i8)#, z(0,u1n,F) tends to the periodic sequenc
Pd(u1n) asn→`.
.
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